Phase portraits for linear systems with real nonzero eigenvalues

For each of the following,

- construct the general solution of the system using the given eigenstuff.
- sketch a phase portrait using the general solution

1.
$$\frac{d\vec{Y}}{dt} = A\vec{Y}$$
 where $A = \begin{bmatrix} 1 & -2\\ 1 & 4 \end{bmatrix}$
eigenvalue $\lambda_1 = 2$ with eigenvector $\vec{v}_1 = \begin{bmatrix} 2\\ -1 \end{bmatrix}$
Eigenstuff for A :
eigenvalue $\lambda_2 = 3$ with eigenvector $\vec{v}_2 = \begin{bmatrix} 1\\ -1 \end{bmatrix}$

2.
$$\frac{d\vec{Y}}{dt} = A\vec{Y}$$
 where $A = \begin{bmatrix} 3 & -1 \\ 5 & -3 \end{bmatrix}$
eigenvalue $\lambda_1 = -2$ with eigenvector $\vec{v}_1 = \begin{bmatrix} 1 \\ 5 \end{bmatrix}$
Eigenstuff for A :
eigenvalue $\lambda_2 = -2$ with eigenvector $\vec{v}_2 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$

3.
$$\frac{d\vec{Y}}{dt} = A\vec{Y}$$
 where $A = \begin{bmatrix} -5 & 4 \\ -2 & 1 \end{bmatrix}$

eigenvalue
$$\lambda_1 = -3$$
 with eigenvector $\vec{v}_1 = \begin{bmatrix} 2\\1 \end{bmatrix}$
Eigenstuff for A:
eigenvalue $\lambda_2 = -1$ with eigenvector $\vec{v}_2 = \begin{bmatrix} 1\\1 \end{bmatrix}$